
Implementation of Algorithms to Classify
Musical Texts According to Rhythms

Arbee L. P. Chen∗, C.S. Iliopoulos†, S. Michalakopoulos†, M. Sohel Rahman†
∗Department of Computer Science, National Chengchi University, Taiwan

†Algorithm Design Group, Department of Computer Science, King’s College London, {csi, spiros, sohel}@kcl.ac.uk

Abstract—An interesting problem in musicology is to
classify songs according to rhythms. A rhythm is represented
by a sequence of “Quick” (Q) and “Slow” (S) symbols, which
correspond to the (relative) duration of notes, such that
S = 2Q. Recently, Christodoulakis et al. [16] presented an
efficient algorithm that can be used to classify musical texts
according to rhythms. In this paper, we implement the above
algorithm along with the naive brute force algorithm to solve
the same problem. We then analyze the theoretical time
complexity bounds with the actual running times achieved
by the experiments and compare the results of the two
algorithms.

Keywords— algorithms, music information retrieval, pat-
tern matching, quick-slow, rhythm.

I. INTRODUCTION

The subject of musical representation for use in com-

puter application has been studied extensively in computer

science literature [2], [1], [4], [9], [13], [11]. Computer

assisted music analysis [12], [10] and music information

retrieval [5], [8], [7], [6] has a number of tasks that can

be related to fundamental combinatorial problems in com-

puter science and in particular to stringology. A survey of

computational tasks arising in music information retrieval

can be found in [3]. Automatic music classification is

one of the fundamental tasks in the area of computational

musicology. Songs need to be classified by one or more of

their characteristics, like genre, melody, rhythm, etc. For

human beings, the process of identifying those character-

istics seems natural. Computerized classification though is

hard to achieve, given that there does not exist a complete

agreement on the definition of those features.

Very recently, Christodoulakis et al. [16] considered

the problem of classification of a music text by rhythms.

In [16], the authors proposed a new framework for the

identification of rhythms in a musical text and devised

an efficient algorithm for that task. In the sequel, this

algorithm can be used for the automatic music classifi-

cation based on rhythms. In this paper, we are interested

in the practical performance of the above algorithm. In

particular, we implement the above algorithm along with

the naive brute force algorithm to solve the same problem.

We then analyze the theoretical time complexity bounds

with the actual running times achieved by the experiments

and compare the results of the two algorithms.

The paper is organized as follows. In Section II, we

briefly review the framework presented in [16] and in

Section III, we briefly describe their algorithm. We also

suggest some changes in their algorithm in order to avoid

some data structural overhead and to simplify coding. We

present our experimental setting along with the results in

Section IV. Finally, we briefly conclude in Section V.

II. BACKGROUND

In [16], a new model for song classification based on

dancing rhythms were presented. For the sake of com-

pleteness, in this section, we briefly review the notations

and definitions used in [16].

The musical sequences (e.g. a song) can be considered

to consist of a series of onsets (or events) that correspond

to music signals, such as drum beats, guitar picks, horn

hits, etc. It is the intervals between those events, that

characterizes the song. The formal definition of a musical

sequence is as follows:

Definition 1: A musical sequence t, is a string t =

t[1]t[2] . . . t[n], where t[i] ∈ N
+, for all 1 ≤ i ≤ n.

Here each t[i], 1 ≤ i ≤ n represents the duration of the

consecutive musical events.

Example 1: Consider a music signal having 5 musical

events occurring at 0th, 50th, 100th, 200th and 240th

milliseconds. Then t = [50, 50, 100, 40] is the musical

sequence representing the above musical signal.

In this particular setting, rhythms are assumed to consist

of a number of intervals. In particular, there are two types

of intervals in a rhythm of a song: quick (Q) and slow
(S). Quick means that the duration between two (not

necessarily successive) onsets is q milliseconds, while

the slow interval is equal to 2q. For example, the dancing

rhythms, cha-cha, foxtrot and jive are represented as

shown in table I.

The formal definition of a rhythm is as follows:

Definition 2: A rhythm r is a string

r = r[1]r[2] . . . r[m], where r[j] ∈ {Q,S}, for all

1 ≤ j ≤ m.

For example, r = QSS. Here Q and S correspond

to durations of activities (intervals between the start of

consecutive events), such that the length of the interval

represented by an S is double the length of the interval

TABLE I
A FEW DANCING RHYTHMS

cha-cha SSQQSSSQQS
foxtrot SSQQSSQQ

jive SSQQSQQS

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

134

represented by Q. However, the exact length of Q or S is

not a priori known. Note that, the alphabet for the musical

text and that of the rhythm differs from each other: the

alphabet for the musical text is Σ = {t[i] | 1 ≤ i ≤ n},
whereas the alphabet for the rhythm is Σr = {Q,S}.
The notion of match and cover in this framework is

extended from the notion of classical string matching in

the following way.

Definition 3: Let Q represents intervals of size q ∈ N
+

milliseconds, and S represent intervals of size 2q. Then Q
is said to q-match with the substring t[i..i′] of the musical

sequence t, if and only if

q = t[i] + t[i + 1] + . . . + t[i′]

where 1 ≤ i ≤ i′ ≤ n. If i = i′ then the match is said

to be solid. Similarly, S is said to q-match with t[i..i′], if

and only if either of the following is true

• i = i′ and t[i] = 2q, or

• i �= i′ and there exists i ≤ i1 < i′ such that q = t[i]+
t[i+1]+ . . .+t[i1] = t[i1 +1]+t[i1 +2]+ . . .+t[i′].

As with Q, the match of S is said to be solid, if i = i′.
Example 2: Consider the musical sequence shown in

Fig. 1. For q = 150, Q matches with t[2..3] and S matches

with t[5..9]. For q = 100, Q matches with t[1..2], t[3]

etc. and S matches with t[6..8]. However, note that for

q = 100, S does not match with t[7..9] despite the fact

that
∑9

i=7 t[i] = 2q.

Definition 4: A rhythm r = r[1] . . . r[m] is said to q-
match with the substring t[i..i′] of the musical sequence t,
if and only if, there exists an integer q ∈ N

+, and integers

i1 < i2 < . . . < im < im+1 such that

1) i1 = i, im+1 = i′ + 1, and

2) r[j] q-matches t[ij ..ij+1 − 1], for all 1 ≤ j ≤ m

Example 3: For instance, the rhythm r = QSS, q-

matches with t[1..5] as well as with t[5..8], in Fig. 2,

for q = 50.

One very important fact is that reporting only the start

(or end) position of a q-matches of a rhythm may not

convey the complete information. This can be easily

realized from the difference in length of the portion of

t that q-matched with the r in the above two instances.

Therefore we have to report both the start and end posi-

tions to denote the q-occurrences against the q-matches.

Therefore, the q-occurrence list for the above case is

Occq = {(1, 5), (5, 8)}.
Definition 5: A rhythm r is said to q-cover the sub-

string t[i..i′] of the musical sequence t, if and only if there

exist integers i1, i
′
1, i2, i

′
2, . . . , ik, i′k, for some k ≥ 1, such

that

1 2 3 4 5 6 7 8 9

50 50 100 50 50 50 50 100 50︸ ︷︷ ︸ ︸ ︷︷ ︸
q = 150 Q S︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸
q = 100 Q Q S

Fig. 1. Q- and S-matching in musical sequences.

• r q-matches t[i�..i
′
�], for all 1 ≤ � ≤ k, and

• i′�−1 ≥ i� − 1, for all 2 ≤ � ≤ k

Example 4: In our example, Fig. 2, the rhythm r =

QSS q-covers t[1..8] for q = 50.

III. MAXIMAL COVERABILITY ALGORITHM

The maximal coverability problem, can be formally

defined as follows [16]:

Problem 1: Given a musical sequence

t = t[1]t[2] . . . t[n], t[i] ∈ N
+, and a rhythm

r = r[1]r[2] . . . r[m], r[j] ∈ {Q,S}, find the longest

substring t[i..i′] of t that is q-covered by r among all

possible values of q.

The following restriction was applied on the above

problem.

Restriction 1: For each match of r with a substring

t[i..i′], there must exist at least one S in r whose match in

t[i..i′] is solid; that is, there exists at least one 1 ≤ j ≤ m
such that r[j] = t[k] = 2q, i ≤ k ≤ i′, for some value of

q.

The justification of the above restriction follows from

the following pathological example: consider a musical

sequence consisting of a single tone repeated every 1ms,

t = 111 . . . 1. Consider also a rhythm r consisting of

Q’s and S’s. Then r will match t in every position i
regardless of the value of q, since any Q in r will match

with a sequence of q 1’s, and any S in r will match with

a sequence of 2q 1’s. Therefore, as it was argued in [16],

from musical point of view, it is meaningful to have at

least one event that is solid.

The algorithm presented in [16] works in the following

main stages.

• Stage 1: Find all occurrences of (solid) S = σ in t
for each possible value of σ.

• Stage 2: Transform the areas around all the S’s found

in Stage 1 into sequences of Q’s and S’s. A sequence

in this stage is identified by σ = S as follows: A

sequence is said to be a q-sequence, if the solid S
is assumed to be of value 2q, i.e. σ = 2q.

• Stage 3: Find the q-matches of r in corresponding

q-sequences from Stage 2.

• Stage 4: Find the maximal area q-covered by r for

all possible values of q and then report a maximum

one.

In the rest of this section we discuss these stages along

with implementation details of the algorithm.

A. Stage 1 – Finding all occurrences of S

In this stage, we need to find all occurrences of S = σ,

for the chosen σ, so that we can (in Stage 2) transform the

1 2 3 4 5 6 7 8 9

25 25 100 50 50 50 50 100 50︸ ︷︷ ︸
r ︸ ︷︷ ︸

r
Fig. 2. q-matches of r = QSS in t, for q = 50.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

135

areas around each of those occurrences to sequences of

Q’s and (possibly) S’s. And we have to repeat the above

for every possible values of σ. A single scan through the

input string suffices to find all occurrences of σ. Since

the stage is repeated for every distinct σ ∈ Σ, overall the

algorithm would need O(|Σ|n) time on this stage alone.
However, it is easy to speedup this stage, by collectively

computing occurrences of all the symbols and storing

them in appropriate data structures. This can be done in

O(n log |Σ|) time and O(n + |Σ|) space in the following

manner. Consider balanced binary search tree first, of

size |Σ| and height log |Σ|, and vector next, of size n,

such that

• (σ, i) is an item in tree first, with key = σ and

data = i, if and only if the leftmost occurrence of

the symbol σ appears at position i of t[1..n]

• next[i] = j if and only if t[i] = t[j] and for all k,

i < k < j, t[k] �= t[i]; if no such j exists, then

next[i] = 0

A single scan through t suffices to compute first and

next. Insertions into first require O(log |Σ|), hence the

total runtime of this stage is O(n log |Σ|).
The data structures first and last were implemented

using the STL associative container map, which in turn

is normally implemented as a balanced search tree. This

ensures a O(log |Σ|) running time for lookups of par-

ticular σ’s and has the added advantage that it keeps the

elements sorted, a fact which is useful in the next stage. In

particular, this helps us to avoid using the complex range

maxima query data structure and associated overhead.
Note that the size of the alphabet Σ is much smaller on

average than the size of the piece of music, i.e. |Σ| n.

As our experimental results show (see section IV), in the

actual social dance music pieces we used, |Σ| ≈ 10, while

a 5 minute song can have thousands of rhythmic events.

So, log |Σ| can be assumed to be constant with respect to

n.

B. Stage 2 – Transformation
The task of this stage is to transform t, which is

a sequence of integers, into a number of sets Rσ of

sequences for all possible values of σ. Each sequence

belonging to Rσ is a q-sequence over {Q,S} for the

chosen q = σ/2. Our aim is to identify all the q-matches

of r in t′ ∈ Rσ (and consequently, into t).
For each occurrence of the current symbol σ = 2q = S,

we try to convert the area surrounding that S into se-

quences or a tile of Q’s. When we can’t continue to make

Q’s, we check whether we can make S’s instead. Note

that we first try to make Q and in case of a failure we try

for an S. Fig. 3 shows an example of the transformation

process.
It is easy to observe that in this way, we can only find

S, if S is solid, because, by definition, we cannot have

S which can’t be divided into two consecutive Q’s. If

we can’t make either of them then we mark the end of

the sequence. So each sequence t′ ∈ Rσ consists of one

or possibly more solid S’s, surrounded by and separated

from each other by zero or more Q’s.

The running time of Stage 2 depends on the total

length of all the sequences produced in this stage. The

following lemmas from [16] give us the bound on number

of sequences produced in this stage and the resulting

running time of Stage 2.

Lemma 1: The length of the total number of sequences

generated in Stage 2 is O(n log H), where H is the

maximum value in t.

Lemma 2: The running time of Stage 2 is O(n log H),

where H is the maximum value in t.

To ensure the theoretical running time of O(n log H)

the algorithm in [16] uses the complex range maxima

query data structure of [14], [15]. However, we prefer

not to use this data structure to avoid the associated

data structural overhead and complex coding. What we

do is as follows. We use the STL map once again,

which is a balanced search tree. The tree is of the

form (key, data) = (〈startPos, endPos〉, sequence) , e.g.

(〈1, 5〉, “QQSQQ”),

(〈7, 9〉, “QSQ”) ...etc. This ensures that we have the se-

quences in sorted by start position order. But this adds to

the asymptotic run time by O(log |RΣ|). However, as it

turns out from our experiments, the resulting increase in

running time is almost negligible.

C. Stage 3 – Find the Matchings

In this stage we consider each t′ ∈ Rσ , for all valid

values of σ and identify all the q-matches of r in t′.
To do that efficiently we exploit a bit-masking technique

as described below. We first define some notations that

we use for sake of convenience. We define St′ and Sr

to indicate an S in t′ and r respectively. Qt′ and Qr

are defined analogously. We first perform a preprocessing

as follows. We construct t′′ from t′ where each St′ is

replaced by 01 and each Qt′ is replaced by 1. Note that

we have to keep track of the corresponding positions of t′

in t′′. We then construct the ‘Invalid’ set I for t′′ where

I includes each position of ‘1’ of St′ in t′′. For example,

if t′ = QQSQS then t′′ = 1101101 and I = {4,7}. It

is easy to see that no occurrence of r can start at i ∈ I .

We also construct r′ from r where each Sr is replaced

by 10 and each Qr is replaced by 0. This completes the

preprocessing. After the preprocessing is done, at each

position i /∈ I of t′′ we perform a bitwise ‘OR’ operation

between t′′[i..i+ |r′|−1] and r′. If the result of the ‘OR’

operation is all 1’s, i.e. 1r′ then we have found a match at

position i of t′′. However, we need to ensure that there is

a solid S in the match. To achieve that we simply perform

a bitwise ‘XOR’ operation between t′′[i..i + |r′| − 1] and

1r′ and only if the result of this ‘XOR’ returns a nonzero

value, we go on with the ‘OR’ operation stated above.

To implement the bitwise operations we have used the

C++ bitset data structure. This ensures minimal storage

(each bit is stored as one bit) and speed since all op-

erations used in this algorithm are constant (AND, OR,

and left and right bit shifts). The total running time of

this stage as deduced in [16] is O(|t′′| × |r′|/w) =

O(n log H m/w) where w is the size of the word of the

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

136

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

. . . 60 50 25 25 100 50 15 30 5 70 30 20 50 100 25 25 100 25 20 5 60. . .︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸ ︸︷︷︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸︷︷︸ ︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸
Q Q S Q Q Q Q S Q S Q

Fig. 3. Transforming the area around t[5] = S = 100 and then around t[14] = S = 100.

target machine. This follows from the fact that we have

to do the above procedure for every sequence produced

in Stage 2. One final remark is that, as our experiments

suggest, the actual number of sequences used in this stage

is far less than O(n log H). This is because we can ignore

all the sequences that are less than m in length which is

done in the implementation to achieve speedup.

D. Stage 4 – Find the Cover

In this stage we can assume that we have sets of q-

occurrence lists corresponding to the q-matches for the

r in t. Let us assume that we have O = {Occσ} where

Occσ is the set of occurrences corresponding to q-matches

with q = σ/2. Recall that we have the occurrences in

sorted order. Now what we do is as follows. For each

Occσ ∈ O, we try to find the corresponding q-covers.

This can easily be done by checking, respectively, the

end and start positions of consecutive occurrences. Also,

we maintain a global variable to keep track of the longest

cover so far. It is easy to observe that the running time

of this stage can’t exceed O(n log H).

IV. PERFORMANCE OF THE ALGORITHM

We have implemented and tested the algorithm of [16]

(referred to as CIRS Algorithm henceforth) and the naive

brute-force algorithm using pieces of music converted

from MIDI to plain text. The tests were run in a Win-

dows environment with an Intel Celeron M processor

of 1.60GHz and 512MB RAM. The implementation was

done in C++ using the STL.

The tests were carried out on dance rhythms that can

be categorized as belonging to the ballroom dance variety.

The definitive list of rhythms that can be said to belong

to this category is still under debate, with various schools

and regions disagreeing. We have chosen 9 of the most

popular rhythms, listed in table II and have performed our

program runs using each rhythm separately. The results

are plotted in Fig. 4 to 6.

We have presented separate graphs for each rhythm. In

the figures, the pieces of music are represented on the X

TABLE II
DANCE RHYTHMS AND THEIR REPRESENTATIONS

1 Bolero SQQSQQ
2 Cha-Cha SSQQSSSQQS
3 Foxtrot SSQQSSQQ
4 Jive SSQQSQQS
5 Mambo/Salsa QQSQQS
6 Quickstep SQQSSQQS
7 Rumba SQSSQ
8 Tango SSQQS
9 Waltz SSS

axis. Where n = 1000 means there were 1000 rhythmic

events in that song and this corresponds roughly to a 4

minute song. The longest songs we ran the algorithms on

are around 17 minutes long. The Y axis shows the running

time, in milliseconds. Based on the graphs presented we

have the following observations.

1) It is easy to observe that the behaviour of CIRS al-

gorithm is almost linear. This observation is backed

by the theoretical running time along with the facts

that in practical cases the size of the dance rhythms

are quite small.

2) We observe that, for very small values of n, i.e.

music size, the brute force algorithm outperforms

the CIRS algorithm. This behavior is also expected

and easy to understand as follows. Recall that

the Brute-force algorithm basically compares the

rhythm against the music sequence at every po-

sition. There are no other significant overheads.

Whereas, CIRS algorithm sets up the data structures

and has four stages regardless of the size and nature

of the music sequence and rhythms. To give more

detail, the brute-force algorithm starts with only

one call to a function called NaiveSearch(), which

doesn’t need any sophisticated data structures. The

CIRS, on the other hand, calls FindOccurrences()

(stage 1), Transform() (stage 2) and FindMatch()

(stage 3). Both algorithms, finally, call the same

function UpdateBestCover(). Therefore, these func-

tional and data structural overheads of CIRS makes

it inferior to the brute force algorithm in cases

where the music sequence is quite small. To get

a better understanding of this particular situation

we also performed experiments with short and long

made up rhythms (the graphs are not shown here

for space constraints) and we tried to pinpoint

the value up to which the brute force algorithm

outperforms CIRS algorithm. We have found that

for larger rhythms, this value is around 300 whereas

for shorter rhythms this is near 500.

3) A final observation on the graphs concerns the near

vertical lines we get on all the graphs at certain

point, e.g. for n around 3500. This is because we are

testing on various pieces of music of similar length

and although the rhythm and thus the length of the

string m remains the same, the nature of the pieces

of music is such that the algorithms speed will vary

according to the number of direct comparisons and

occurrences of the rhythm string in the music string.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

137

Fig. 4. Performance of Dance Rhythms: Bolero, ChaCha and foxtrot

Rhythm: Bolero (SQQSQQ)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Piece of music (n)

R
un

ni
ng

 ti
m

e
(m

se
cs

)

Brute-force CIRS

Rhythm: Cha-Cha (SSQQSSSQQS)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Piece of music (n)

R
un

ni
ng

 ti
m

e
(m

se
cs

)

Brute-force CIRS

Rhythm: Foxtrot (SSQQSSQQ)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Piece of music (n)

R
un

ni
ng

 ti
m

e
(m

se
cs

)

Brute-force CIRS

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

138

Fig. 5. Performance of Dance Rhythms: Jive, Mambo and Quickstep

Rhythm: Jive (SSQQSQQS)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Piece of music (n)

R
un

ni
ng

 ti
m

e
(m

se
cs

)

Brute-force CIRS

Rhythm: Mambo/Salsa (QQSQQS)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Piece of music (n)

R
un

ni
ng

 ti
m

e
(m

se
cs

)

Brute-force CIRS

Rhythm: Quickstep (SQQSSQQS)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Piece of music (n)

R
un

ni
ng

 ti
m

e
(m

se
cs

)

Brute-force CIRS

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

139

Fig. 6. Performance of Dance Rhythms: Rumba, Tango and Waltz

Rhythm: Rumba (SQSSQ)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Piece of music (n)

R
un

ni
ng

 ti
m

e
(m

se
cs

)

Brute-force CIRS

Rhythm: Tango (SSQQS)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Piece of music (n)

R
un

ni
ng

 ti
m

e
(m

se
cs

)

Brute-force CIRS

Rhythm: Waltz (SSS)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Piece of music (n)

R
un

ni
ng

 ti
m

e
(m

se
cs

)

Brute-force CIRS

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

140

V. CONCLUSIONS

In this paper we have considered the problem of the

automated classification of songs according to rhythms

from practical point of view. We have implemented

the CIRS algorithm [16] for identifying musical texts

according to rhythms along with the naive brute force

algorithm to solve the same problem. We have then

analyzed the theoretical time complexity bounds with the

actual running times achieved by the experiments and

compare the results of the two algorithms.
To the best of our knowledge the CIRS algorithm [16]

is the first attempt to identify musical texts according to

rhythms and in this paper we have made the effort to an-

alyze the algorithm experimentally. Due to the absence of

any other algorithms with a similar goal in the literature,

we have only compared CIRS with a naive brute force

algorithm. We have also suggested some changes in the

original CIRS algorithm and discussed the justifications

of those changes. It would be interesting to see whether

the CIRS algorithm could be improved both theoretically

and experimentally. Another interesting research direction

could be to investigate the case where the assumption of

S being double the duration of Q is relaxed.

ACKNOWLEDGEMENT

C.S. Iliopoulos is supported by EPSRC and Royal

Society grants. S. Michalakopoulos is supported by an

EPSRC studentship. M. Sohel Rahman is supported by

the Commonwealth Scholarship Commission in the UK

under the Commonwealth Scholarship and Fellowship

Plan (CSFP) and he is on leave from Department of CSE,

BUET, Dhaka-1000, Bangladesh.

REFERENCES

[1] Alexander R. Brinkman, PASCAL Programming for Music Re-
search. The University of Chicago Press, Chicago and London,
1990.

[2] D. Byrd and E. Isaacson, A Music Representation Requirement
Specification for Academia. The Computer Music Journal, vol.
27, 2003, pp.43–57.

[3] T. Crawford and C.S. Iliopoulos and R. Raman, String Match-
ing Techniques for Musical Similarity and Melody Recognition.
Computing in Musicology, vol. 11, 1998, pp.227–236.

[4] Peter Howell and Robert West and Ian Cross, Representing Musi-
cal Structure. Academic Press London, 1991.

[5] C. S. Iliopoulos and K. Lemstrom and M. Niyad and Y. J.
Pinzon, Evolution of Musical Motifs in Polyphonic Passages. In
G.Wiggins, editor, Symposium on AI and Creativity in Arts and
Science, Proceedings of AISB’02, 2002, pp.67–76.

[6] K. Lemstrom, String Matching Techniques for Music Retrieval.
PhD Thesis, University of Helsinki, Department of Computer
Science, 1998.

[7] K. Lemstrom and P. Laine, Musical Information Retrieval Using
Musical Parameters, International Computer Music Conference,
1998, pp.341–348.

[8] K. Lemstrom and J. Tarhio, Detecting Monophonic Patterns Within
Polyphonic Sources, Multimedia Information Access Conference,
vol. 2, 2000, pp.1261–1279.

[9] Alan Marsden and Anthony Pople, Computer Representations and
Models in Music. Academic Press London, 1992.

[10] M. Mongeau and D. Sankoff, Comparison of Musical Sequences,
Computers and the Humanities, vol. 24, 1990, pp.161–175.

[11] Eleanor Selfridge-Field, Beyond MIDI: The Handbook of Musical
Codes. The MIT Press, 1997.

[12] D.A. Stech, A Computer Assisted Approach to Micro Analysis
of Melodic Lines, Computers and the Humanities, vol. 15, 1981,
pp.211–221.

[13] G. A. Wiggins and E. Miranda and A. Smaill and M. Harris, A
Framework for the Evaluation of Music Representation Systems,
The Computer Music Journal, vol. 17, no. 3, 1993, pp.31–42.

[14] H. Gabow and J. Bentley and R. Tarjan, Scaling and Related
Techniques for Geometry Problems, Symposium on the Theory of
Computing (STOC), 1984, pp.135–143.

[15] Michael A. Bender and Martin Farach-Colton. The LCA Problem
Revisited, Latin American Theoretical INformatics (LATIN), 2000,
pp.88–94.

[16] Manolis Christodoulakis, Costas S. Iliopoulos, M. Sohel Rahman
and William F. Smyth. Identifying Rhythms in Musical Texts,
International Journal of Foundations of Computer Science, in
press.

Proceedings SMC'07, 4th Sound and Music Computing Conference, 11-13 July 2007, Lefkada, Greece

141

